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a b s t r a c t

Multiple linear regression (MLR), radial basis network (RB), and multilayer perceptron (MLP) neural
network (NN) models have been explored for the estimation of toxicity of ammonium, imidazolium, mor-
pholinium, phosphonium, piperidinium, pyridinium, pyrrolidinium and quinolinium ionic liquid salts in
the Leukemia Rat Cell Line (IPC-81) and Acetylcholinesterase (AChE) using only their empirical formulas
(elemental composition) and molecular weights. The toxicity values were estimated by means of decadic
Keywords:
Ionic liquid
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P
M

logarithms of the half maximal effective concentration (EC50) in �M (log10 EC50). The model’s perfor-
mances were analyzed by statistical parameters, analysis of residuals and central tendency and statistical
dispersion tests. The MLP model estimates the log10 EC50 in IPC-81 and AchE with a mean prediction error
less than 2.2 and 3.8%, respectively.
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. Introduction

In the recent years, ionic liquids (ILs) have been given an increas-
ng attention in the chemical industry sector because of their
ttractive properties as solvents (negligible vapor pressure, high
issolving power, thermomechanical and electrochemical stabil-

ty, a wide range in the liquid state, solvating properties for diverse
aterials, high ionic conductivity, wide electrochemical window,

tc.). Due to their negligible vapor pressures, ILs are potentially
onsidered as environmentally friendly [1]. But as ILs are soluble in
ater, they can accumulate in the environment, and so the determi-
ation of toxicity is required to determine the environmental risk
f accidental ILs discharges.

In recent years, different studies have been carried out to deter-
inate the toxicity of ILs. In particular, the influence of ILs on Vibrio

scheri, green algae species, Daphnia magna, Lemna minor, Danio
erio, Acetylcholinesterase and Leukemia Rat Cell Line have been stud-
ed [2–4].
The high number of possible combinations between cations and
nions leads to an enormous number of viable ILs. Up to now,
ore than a million different ionic liquids have been designed [5].

very day, thanks to the high number of industrial applications and
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dvantages of using ILs, others ILs are appearing. But, from an envi-
onmental point of view, the number of ILs with known effects on
he environment has increased at a slower pace. Moreover, con-
erning the risk assessment for human beings, the number of ILs
ith known effects is increased even more slowly. For this rea-

on, designing a mathematical tool to estimate the toxicity of ILs
s very important. With this objective, Luis et al. have designed
n algorithm to estimate the aquatic toxicity of 43 imidazolium,
yridinium and pyrrolidinium ILs using a novel group contribu-
ion. The correlation coefficient between estimated values by the
roposed model and their respective real values is higher than 0.9
6]. In this line, but estimating the toxicity of non-ionic liquids
ompounds, investigations can be found in literature. For exam-
le, the pesticide aquatic toxicity was studied by Mazzatorta et al.
sing linear and non-linear regressions [7]. Zhao et al. estimated the
oxicity of organic compounds by neural networks (NNs), multiple
inear regression and molecular structures of these chemicals [8].
osav et al. estimated the toxicity of novel amphetamines using
Ns and the constitutional characteristics of them [9]. NNs and
rincipal component analysis (PCA) were applied to design expert
ystems to diagnose the atherosclerosis [10], to discover the corre-
ation between urinary nucleoside profiles and tumours [11] and to

creen novel therapeutic agents in toxicological studies [12]. Given
hat there is no reference related with the estimation of the toxic-
ty of ionic liquids using NNs/PCA and the successful application of
his combination in other fields, these algorithms have been tested
ere.
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Neural network is a mathematical algorithm which has the
apability of relating the input and output variables without requir-
ng a prior knowledge of the relationships between them. Its
tructure is relatively simple, with connections in parallel and
equence between neurons. This means a short computing time
nd a high potential of robustness and adaptive performance
13]. On the other hand, principal component analysis is a non-
arametric and unsupervised technique, mathematically defined
s an orthogonal lineal transformation. This technique transforms
he data into a new coordinate system. Because of this, PCA is
sed to reduce the dimensionality of the database retaining their
haracteristics.

The aim of this work is to propose, design and validate differ-
nt mathematical methods to estimate the toxicity of ionic liquids
y means of available information. With this objective, molec-
lar weights and empirical formulas (elemental composition)
f 153 ammonium, imidazolium, morpholinium, phosphonium,
iperidinium, pyridinium, pyrrolidinium and quinolinium ionic

iquids have been used to quantify their biological activity in
n Acetylcholinesterase (AChE) enzyme which is an essential part
f the human nervous system and in Leukemia Rat Cell Line
IPC-81) [4]. The toxicity was evaluated by means of decadic loga-
ithms of the half maximal effective concentration (EC50) in �M
log10 EC50). Mathematicaly, these estimations were carried out
y the combination of principal component analysis techniques
nd linear regressions or non-linear models (NNs models). To
evelop them, experimental data available in the literature were
mployed [2].

The paper is organized as follows: first the PCA and models are

resented (a detailed explanation of them is given in Appendix A),
hen the dimensionality of the data shown in Table A1 (Appendix A)
s reduced by PCA technique. And using these new data, all models
re designed and tested. Then, their estimations are statistically
nalyzed and compared.
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Fig. 1. Scheme of linear and non-linear m
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. Material and methods

In this work, to design and optimize all the models used, a
atabase of log10 EC50 in IPC-81 and AChE systems for 153 ionic liq-
ids was obtained from literature (Table A1, Appendix A) [2]. The
pproximate confidence regions of these data were established to
e about ±0.15 [2].

Four different models were studied. Two linear (multiple linear
egression models with and without constant, MLR) and two non-
inear (radial basis, RB, and multilayer perceptron neural networks,

LP) models have been tested. Every NN model used in this work
as designed using Matlab version 7.01.24704 (R14) [14]. The MLR
odels, principal component analysis and statistical analyses were

arried out by Statgraphics Plus version 5.1 [15].

.1. Principal component analysis

Principal component analysis is a classical unsupervised tech-
ique based on linear algebra. It involves a mathematical procedure,
escribed in Appendix A, that transforms a number of possible cor-
elated variables into a smaller number of uncorrelated variables
alled principal components (PCs) [16]. The principal components
re linear combinations of the original variables. The first principal
omponent accounts for as much of the variability in the data as
ossible, and each succeeding component accounts for as much of
he remaining variability as possible. This linear transformation has
een widely used in data analysis, on exploratory tool to uncover
nknown trends in the data, compression, etc.
.2. Neural networks

Multilayer perceptron (MLP) and radial-basis function (RB)
odels have been used here. The MLP model is probably the
ost commonly used today. It is a feed-forward network with

odels programming methodology.
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Table 1
List of constitutional descriptors used

Cation Anion

Number of atoms Number of atoms Relative number of I atoms
Number of C atoms Number of C atoms Number of S atoms
Relative number of C atoms Relative number of C atoms Relative number of S atoms
Number of H atoms Number of H atoms Number of B atoms
Relative number of H atoms Relative number of H atoms Relative number of B atoms
Number of N atoms Number of N atoms Number of Sb atoms
Relative number of N atoms Relative number of N atoms Relative number of Sb atoms
Number of O atoms Number of O atoms Number of P atoms
Relative number of O atoms Relative number of O atoms Relative number of P atoms
Number of P atoms Number of Cl atoms Number of rings
Relative number of P atoms Relative number of Cl atoms Relative number of rings
Number of rings Number of Br atoms Number of benzene rings
R ber o
N atom
R ber o
M atom
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elative number of rings Relative num
umber of benzene rings Number of F
elative number of benzene rings Relative num
olecular weight Number of I

prediction horizon and supervised learning. It is characterised
y layered architectures and feed-forward connections between
eurons, or back connections. Weights are assigned to these con-
ections between the neurons of one layer and the following. In
rder to predict with the least possible error, these values must
e optimized. The MLP model is a good pattern classifier, signal
lter and data compressor [17]. Specifically, it is used to model
ystems based on non-linear dynamics [13,18]. The other type
f NN model is the RB. As can be seen in Fig. 1, the RB model
hows similar topology but the transfer function and learning
ethod are different. The design of a RB model can be viewed as
curve-fitting problem in a high-dimensional space. Accordingly,
he learning is equivalent to finding a surface in a multidimen-
ional space that provides an optimal fit [19]. Another important
dvantage of both NN models is that knowledge of the system to
e modelled is not necessary; therefore, the NNs have enormous
pplicability.

t
l
m
I
v

able 2
rincipal component weight values depending on the main constitutional descriptors

ation PC 1 PC 2 PC 3

olecular weight 0.1298 0.0847 0.14
umber of atoms 0.1400 −0.3838 0.12
umber of C atoms 0.0314 −0.4193 −0.0
elative number of C atoms −0.2259 −0.1704 −0.37
umber of H atoms 0.1989 −0.3423 0.16
elative number of H atoms 0.3118 −0.0155 0.23
umber of N atoms −0.3493 −0.0180 0.17
elative number of N atoms −0.3081 0.1417 0.0
umber of O atoms 0.1218 0.2707 0.19
elative number of O atoms 0.1092 0.2794 0.20
umber of P atoms 0.2138 −0.1756 −0.01
elative number of P atoms 0.2138 −0.1756 −0.01
umber of rings −0.2639 0.0014 −0.0
elative number of rings −0.2639 0.0014 −0.0
umber of benzene rings −0.1034 −0.1279 −0.37
elative number of benzene rings −0.1034 −0.1279 −0.37

nion PC 8 PC 9

umber of C atoms 0.2580 0.5294
elative number of C atoms 0.2830 0.4304
umber of H atoms 0.0912 0.5807
elative number of Br atoms −0.1526 −0.0534
umber of F atoms 0.2950 −0.3185
umber of I atoms −0.0704 0.0159
umber of S atoms 0.4299 −0.1683
elative number of S atoms 0.3737 −0.1561
umber of B atoms −0.1529 0.1604
elative number of B atoms −0.1538 0.0542
olecular weight 0.4400 −0.0558
f Br atoms Relative number of benzene rings
s Molecular weight
f F atoms

s

As can be seen in Fig. 1, the MLP and RB models used in this
ork consist of two layers with connections to the outside world

an input layer where data are presented to the network and an
utput layer which holds the network response to given inputs)
nd one hidden layer. Both non-linear models use the same learning
nd verification samples. The characteristics of NN models, how to
ptimize their parameters, learning and verification samples and
rocesses are described in Appendix A.

.3. Linear models

The linear models tested in this work are considered linear in

he parameters, also called statistically linear. Linear and multiple
inear regressions are the most widely used and known modelling

ethods. They have been adapted to a broad range of situations.
n a multivariate case, when there is more than one independent
ariable, the regression line cannot be visualized in two dimensions

PC 4 PC 5 PC 6 PC 7

82 0.1701 −0.1714 0.2417 −0.8411
39 −0.1300 −0.0906 0.0053 −0.0823

480 −0.1156 −0.0861 0.0061 −0.1136
53 0.0280 0.0764 0.0658 −0.1031
57 −0.1512 −0.0632 −0.0164 −0.0539
52 −0.2179 −0.0612 −0.1763 0.1232
90 0.1332 0.0913 −0.0601 −0.1834

422 0.2620 0.2289 0.0555 −0.1627
65 0.0691 −0.4113 0.1964 0.1081
07 0.0979 −0.3988 0.1922 0.1235
15 0.3597 0.2311 0.4087 0.1849
15 0.3597 0.2311 0.4087 0.1849

439 −0.3798 −0.0910 0.4773 0.0689
439 −0.3798 −0.0910 0.4773 0.0689
32 0.2072 −0.4193 −0.0809 0.0428
32 0.2072 −0.4193 −0.0809 0.0428

PC 10 PC 11 PC 12

−0.0434 0.0423 0.1315
0.0602 −0.0498 −0.1141
0.0685 −0.0178 0.04761
0.3791 −0.0532 0.8426

−0.3391 −0.1662 0.0777
−0.1053 0.9145 0.0229

0.03256 0.0400 −0.0012
0.0881 0.03679 −0.1855

−0.5775 −0.2988 0.1281
−0.5961 0.1622 0.2250
−0.1009 0.0855 0.2193
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pace. In this case, a linear equation containing all those variables
an be constructed in IPC-81 and AChE, Eq. (1).

=
n∑

i=1

ˇixi + C (1)

n Eq. (1), y, ˇi, xi and C represent response variable, parameters
f the model, independent variables and constant of the model,
espectively [20].

. Result and discussion

PCA is used to reduce the dimensionality of data and with these
ew data two linear and two non-linear models have been designed
nd tested to estimate the toxicology of ammonium, imidazolium,
orpholinium, phosphonium, piperidinium, pyridinium, pyrroli-

inium and quinolinium ionic liquids, Table A1 (Appendix A).

.1. Principal component analysis

The NN models are used to estimate the log10 EC50 in IPC-81 and
ChE systems in the presence of ILs studied. These models have two
utput neurons. As the models were designed as tool to estimate
asily the toxicity of ILs, the output values were calculated using the
lemental composition and molecular weight of every IL, Table 1. As
an be seen, in this way, forty-six input nodes would be necessary. If
MLP model with forty-six inputs and two outputs were used, more

han 256 parameters of the NN must be optimized. As the number
f parameters is higher than the learning sets, this topology would
ot be adequate. Therefore, decreasing the number of input vari-
bles is necessary. The reduction of the number of parameters was
arried out by principal component analysis technique (described
n Appendix A).

The simplest and the most common method used to solve the
umber of principal component problem is the eigenvalue-one cri-
erion also known as the Kaiser criterion [21] where the principal
omponents with eigenvalue greater than 1 are selected. The PC
ith highest eigenvalue is considered as the most significant and

ubsequently the PCs are introduced into the calibration model one
fter the other until the eigenvalue is equal to unity [22]. As can
e seen in Table 4, PCA yields seven and five PCs explaining 94.76
nd 88.31% of the total variance in the cation and anion variables,
espectively. The dimension of the input data was decreased from
6 independent variables to 12 principal components (7 for the
ation and 5 for the anion). The principal components are calculated
sing Eq. (2).

Cj =
M∑

i=1

Wpcj
i
· Dj

i
(2)

n Eq. (2), the Wpcj
i
, Dj

i
and M are the weight for a given princi-

al component (1 ≤ j ≤ 12), the constitutional descriptor value and
he number of descriptors used, respectively. The Wpcj

i
values are

hown in Table 2. The three descriptors with the greatest influ-
nce on most of the principal components are shown in Table 3.
he number of phosphorus atoms and molecular weight of the ILs
ave influence over 42% on the principal components. The effect of
he molecular weight of different types of polymers on the toxicity
ound here has been published previously [23,24].

Given that 12 principal components are necessary, the input

ayer consists of 12 nodes. Then, the NN models are made up of
2 input nodes and two output neurons. Learning and verification
amples were made (Table A1, Appendix A). Both samples were
omposed of 14 rows, one for each variable (12 principal compo-
ents and 2 for log10 EC50 in IPC-81 and AChE systems). The learning Ta
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Table 4
Main characteristics of the principal components selected

Cation Anion

Principal components Eigenvalue Explained variance (%) Principal components Eigenvalue Explained variance (%)

PC1 6.0110 28.624 PC8 4.6514 38.762
PC2 5.1538 53.166 PC9 2.2532 57.538
PC3 3.1722 68.272 PC10 1.7628 72.228
P PC11 1.0973 81.372
P PC12 1.0832 88.307
P
P

s
t

3

e
(
a
b
a
t
c
a
s
p
t

M

I
a
p
l
d
w

e
R
t
i
e
a
t
l

3

i
T

Table 6
Correlation coefficients of real against predicted values of log10 EC50 of IPC-81 and
AChE systems in ILs mixtures using RB model and verification sample

S

l
l

3

c
c
I
c
r
a

a
G
B
d

3

w
M
m
p
A
u
e

3

c
e

T
R

I
I
A
A

l

C4 1.9627 77.618
C5 1.6683 85.562
C6 1.1306 90.946
C7 1.0801 94.760

ample consists of 121 columns (80% of whole data). The verifica-
ion sample has the same format but with the remaining 20%.

.2. Multiple linear regression models

The MLR models represent the independent contributions of
ach principal component to the dependent variable estimation
log10 EC50). In this model, the linearity relationship between vari-
bles is assumed. Obviously, in practice, this assumption can never
e confirmed, but in some cases the MLR procedures are not greatly
ffected by minor deviations from this assumption. In this case,
he assumption reliability has been tested by calculating statisti-
al parameters (correlation coefficient, R2, standard deviation, �,
nd mean prediction error, Eq. (3)). The regression coefficients and
tatistics of fits obtained from MLR models using verification sam-
le are shown in Table 5. As can be seen, the data were fitted using
wo MLR models, Eq. (1) (with and without constant, C).

PE = 1
N

N∑
k=1

|rk − yk|
rk

100 (3)

n Eq. (3), N, rk and yk are the number of estimations, and the real
nd estimated values, respectively. Taking into account the mean
rediction error (MPE), R2 and � values (Table 5 and Fig. 2) calcu-

ated using the verification sample, the MLR model with constant
escribes the experimental data more adequately than the MLR
ithout constant model, Eq. (1).

Although these MLR models are the best linear fit between
xperimental log10 EC50 and the twelve principal components,
2 > 0.7 can be reached using only the four first PCs. Therefore,
he constitutional descriptors of the cations present the greatest
nfluence on the studied toxicity. This point is in agreement with lit-
rature [25,26]. In particular, the number of aromatic rings, carbon
nd nitrogen atoms of the cation are the most important constitu-
ional descriptors, and these influences are also in agreement with
iterature [26].
.3. Non-linear models

As can be seen in Table 5, a linear model with 12 or 13 parameters
s not able to describe the system as non-linear models could do.
herefore, the non-linear models were tested.

i
t
t

t

able 5
egression coefficients and statistics of the fits obtained from MLRs using the verification

C ˛1 ˛2 ˛3 ˛4 ˛5 ˛6 ˛7

PC-81 5.767 0.023 −0.093 0.252 −0.030 −0.070 0.351 0.22
PC-81 – −0.030 −0.074 0.005 0.357 0.290 0.314 −0.05
ChE 2.650 0.082 3.8 × 10−3 −0.023 0.090 −0.147 0.448 0.02
ChE – 0.058 0.017 −0.137 0.268 0.018 0.430 −0.10

og10EC50 = C +
12∑
i

˛i · PCi .
ystems HNN SC MPE (%) R2 �

og10 EC50 (IPC-81) 121 100 11.1 0.861 0.07
og10 EC50 (AChE) 121 1000 7.1 0.842 0.05

.3.1. RB models
Following the description presented in Appendix A, the spread

onstant was optimized. The main results are shown in Table 6. As
an be seen, using the verification sample, the log10 EC50 in both
PC-81 and AChE systems was estimated with correlation coeffi-
ients of real vs. predicted values higher than 0.861 and 0.842,
espectively. The mean prediction error values are less than 11.1
nd 7.1%, respectively, Table 6.

As can be seen in Fig. 1, the RB model consists of an input, hidden
nd output layers. The transfer functions of hidden neurons are
aussian types but the output layer is formed by linear functions.
ecause of this, the statistical results are slightly better than those
etermined by the application of linear models.

.3.2. MLP models
As was described in Appendix A, the parameters of the NN

ere optimized. The main results are shown in Table 7. In the
LP model, every neuron is based on non-linear function (sig-
oid function). In this case, using the verification sample, the mean

rediction error (MPE) calculated in the estimation of IPC-81 and
ChE is less than 3.9 and 2.8%, respectively, Table 7. The MLP model
ses less than 61 parameters, Table 7. Moreover, in most systems,
stimated value/real value = 1.001, Fig. 2.

.4. Models comparison

In order to guarantee the reliability of the estimations cal-
ulated by these models, the applicability domain has been
valuated selecting the compounds with cross-validated standard-

zed residuals greater than three standard deviation [27,28]. In
his evaluation, a response outlier was determined (3-methyl-1-
etradecylimidazolium chloride) [28].

As can be seen in Tables 5–7, the most adequate values of
he correlation coefficient of predicted vs. real values, MPE and

sample

˛8 ˛9 ˛10 ˛11 ˛12 R2 � MPE (%)

2 0.392 0.219 −2.4 × 10−3 0.584 0.286 0.867 0.07 10.6
2 0.475 0.498 0.496 0.550 1.079 0.265 0.1 22.0
5 0.434 0.537 0.225 0.686 0.417 0.814 0.06 7.7
0 0.473 0.664 0.454 1.589 0.781 0.452 0.1 11.3
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Fig. 2. Performance of interpolated models (verification sample); (a and b) MLR with con

Table 7
Parameters of the MLP model (with a 95% confidence level)

Optimized parameters of the NNs

Transfer function Sigmoid
Training function TrainBR
Number of input neurons 12
Number of hidden neurons 2
Number of output neurons 2
Lc 1
Lcd 0.001
Lci 2

IPC-81 AChE

Final prediction error (verification sample)
MPE (%) 3.9 2.8
R2 0.982 0.973
� 0.03 0.02
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stant; (c and d) MLR without constant; (e and f) RB model; (g and h) MLP model.

tandard deviation of both log10 EC50 are reached using the MLP
odel.
Given that a high R2 value does not guarantee that any model

ts the data well, in every tested model a residuals analysis of
he data was carried out. As can be seen in Fig. 3, there is a cor-
elation between residuals (the difference between the observed
alue and the corresponding fitted value) from MLR models and
oth log10 EC50, which is in agreement with their high MPE values,
able 5. The least correlation coefficient of the residuals values vs.
og10 EC50 is reached when the model used is MLP (Fig. 3). From
he residuals point of view, the MLP is the most adequate model to
stimate the log10 EC50 in both IPC-81 and AChE systems in the ILs

ested. It is in agreement with the results shown in Sections 3.2 and
.3.

In every model tested, statistical differences between real and
stimated values were calculated using the p-value (response of
ach statistical analysis test), Table 8 [29]. In every model, the simi-
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ig. 3. Graphical analysis of residuals from the interpolated models studied (verific
odel; (g and h) MLP model.
arity of the real and estimated values was evaluated analyzing their
edians by Mann–Withney and Kruskal–Wallis tests. Taking into

ccount their mean p-values, the MLP model was the most reliable.
he variances of real and estimated databases were also compared

b
c
F
t

able 8
-Values calculated by statistical analysis tests applied to real vs. those estimated values i

est type IPC

Linear models Non-linear mode

Linear regression MLP RB

Without constant With constant

ann–Whitney 0.137 0.208 0.245 0.109
olmogorov–Smirnov 0.147 0.079 0.607 0.079
ruskal–Wallis 0.135 0.205 0.242 0.108
-test 0 0.008 0.249 0
-Test 0.036 0.044 0.144 0.021
ample); (a and b) MLR with constant; (c and d) MLR without constant; (e and f) RB
y the F-test. Due to their p-values, the real and estimated values
alculated by the MLP model can be considered statistically similar.
rom the mean of real and estimated values (t-test) point of view,
he estimations of log10 EC50 in both IPC-81 and AChE systems by

n the verification sample by every applied model (threshold value = 0.05)

AChE

ls Linear models Non-linear models

Linear regression MLP RB

Without constant With constant

0.307 0.402 0.860 0.321
0.079 0.019 0.607 0.413
0.304 0.398 0.855 0.317
0 0 0.155 0.024
0.085 0.094 0.379 0.309
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ig. 4. LP model performances using external validation sample (estimations of the
og10 EC50 in IPC-81 (�) and AChE (�) systems) [31].

he MLP model can also be considered statistically similar. From the
olmogorov–Smirnov test point of view, real values and those esti-
ated by non-linear models are statistically similar. Finally, from
central tendency and statistical dispersion analysis point of view,

he most adequate model to estimate both log10 EC50 is MLP.

.5. Application of MLP model

Finally, in order to carry out an external validation of the most
dequate model [30], a new validation sample based on experi-
ental data available in literature was employed [31]. Taking into

ccount that the external validation sample range must be within
he learning sample range and belong to the same application
omain (vide supra), the data sets used in the external validation
f the MLP model were selected. The mathematical procedure fol-
owed was similar to the verification process described above. As
an be seen in Fig. 4, the statistical results of estimated vs. real
alues (R2 > 0.94 and MPE < 9%) are worse than those calculated in
he internal validation. These statistical results are to be expected
ecause, as Stasiewicz et al. stated, the structures of ionic liquids
ested in both databases are different [31]. Nevertheless, taking
nto account this chemical difference, this statistical result con-
rmed that the MLP model is an adequate method to calculate the
oxicity values with constitutional descriptors. Since R2 > 0.94, the

LP model presents an acceptable goodness of fit [30]. Taking into
ccount the statistical results of internal and external validation
rocesses, the optimized MLP model has sufficient robustness and
redictive capacity to estimate the toxicology values by constitu-
ional descriptors [30].

To sum up, two main types of interpolative models have been
ested (linear and non-linear). Taking into account the statistical
esults shown in this work, depending on the final application of the
odel, both models could be used. If a faster response is required,
MLR with constant model could be designed and applied using

xperimental data. Otherwise, if the mathematical complexity of
he model is not important or if high accuracy is required, the MLP

odel should be adequate.

. Conclusion

In this work, four mathematical approaches have been designed

o estimate the toxicity of ammonium, imidazolium, morpholin-
um, phosphonium, piperidinium, pyridinium, pyrrolidinium and
uinolinium ionic liquids in Leukemia Rat Cell Line and Acetyl-
holinesterase enzyme. The estimations have been carried out using
nly easily available information (empirical formula and molecular

f

S

s Materials 164 (2009) 182–194 189

eight of ILs) and no assumptions were taken into account in the
esign and application of the tested models.

Taken into account the statistical results, the most reliable
odel was found to be MLP. In the internal validation, its mean MPE

nd R2 values are less than 3.3% and 0.98, respectively. In the exter-
al validation, as the structural chemicals used are different, the
tatistical results are not as good, and as a result the mean MPE and
2 values are less than 9% and 0.94, respectively. Taking the statisti-
al results into account, this model shows an acceptable goodness
f fit, sufficient robustness and an adequate predictive capacity to
stimate the toxicity of the ionic liquids by constitutional descrip-
ors.

From a performance error and computational effort point of
iew, two groups could be made. The simplest model, MLR with
onstant model, shows worse statistical parameters than those cal-
ulated by the MLP model. Although the MLP model requires a more
omplex calculation process to optimize its parameters, it shows
he best statistical results. Definitively, in each case, the final appli-
ations of the model will help us to select that which is the most
dequate.
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ppendix A

.1. Principal component analysis description

Principal component analysis (PCA) is one of the most valu-
ble results from applied linear algebra. PCA is used abundantly
n all forms of analysis (from neuroscience to computer graphics),
ecause it is a simple and non-parametric method of extracting
elevant information from confusing data sets. PCA provides a tech-
ique to reduce a complex data set to a lower dimension to reveal
he sometimes hidden, simplified structure that often underlies it.
t is based on the assumption that most information about classes is
ontained in the direction along which the variation is the largest.
or a given p-dimensional data set ˚, the m principal axes V1, V2, . . .,
m, where 1 ≤ m ≤ p, are orthonormal axes on which the retained
ariance is maximum in the projected space. Generally, V1, V2, . . .,
m can be given by the m leading eigenvectors of the sample covari-
nce matrix:

= 1
N

N∑
i=1

(xi − �)T(xi − �) (A.1)

here � and N are, respectively, the sample mean and the number
f samples, and xi ∈ ˚.

Vi = gVi, i ∈ 1, . . . , m (A.2)

here g is the ith largest eigenvalue of S. The m principal component
f a determined observation vector x ∈ ˚ is given by

= [y1, . . . , ym] = [VT
1 x, . . . , VT

mx] = VTx (A.3)

The m principal components of x are decorrelated in the pro-
ected space. In multi-class problems, the variations of data are
etermined on a global basis, that is, the principal axes are derived

rom a global covariance matrix:

ˆ = 1
N

K∑
j=1

Nj∑
i=1

(xji − ˘)(xji − ˘)T (A.4)
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Table A1
Experimental values of log10 EC50 in IPC-81 and AChE systems used to design and optimize the models used [2]

Cation Anion IPC-81 AChE

Ammonium
(Ethoxymethyl)ethyldimethylammonium Chloride 3.59 2.36
(Ethoxymethyl)ethyldimethylammonium Bis(trifluoromethylsulfonyl)amide 3.8 2.3
Tetraethylammonium Bis[1,2-benzenediolato(2-)-O1,O2]borate 1.17 2.9
Benzyldecyldimethylammonium Chloride 0.64 0.73
Butylethyldimethylammonium Bis(trifluoromethylsulfonyl)amide 3.43 2.03
Butyltrimethylammonium Bis(trifluoromethylsulfonyl)amide 3.61 2.6
Ethyl(2-ethoxyethyl)dimethylammonium Bis(trifluoromethylsulfonyl)amide 3.28 2.55
Ethyl(2-hydroxyethyl)dimethylammonium Bis(trifluoromethylsulfonyl)amide 3.7 2.59
Ethyl(2-methoxyethyl)dimethylammonium Bis(trifluoromethylsulfonyl)amide 3.31 2.45
Ethyl(3-methoxypropyl)dimethylammonium Bis(trifluoromethylsulfonyl)amide 3.54 2.92
Tetrabutylammonium Bromide 2.25 2.3
Imidazolium
(Ethoxymethyl)methylimidazolium Chloride 3.6 2.61
1-(2-Ethoxyethyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.18 2.12
1-(2-Ethoxyethyl)-3-methylimidazolium Bromide 4.14 2.27
1-(2-Hydroxyethyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.76 2.88
1-(2-Methoxyethyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.25 2.47
1-(2-Methoxypropyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.34 2.58
1-(2-Methoxypropyl)-3-methylimidazolium Chloride 4.49 2.61
1-(3-Hydroxypropyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.66 2.74
1-(8-Hydroxyoctyl)-3-methylimidazolium Bromide 2.36 1.28
1-(Cyanomethyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.9 2.88
1-(Ethoxymethyl)-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 3.2 2.45
1-Butyl-3-ethylimidazolium Tetrafluoroborate 3.26 2.04
1-Butyl-3-ethylimidazolium Trifluoroacetate 3.31 2.01
1-Butyl-3-ethylimidazolium Trifluoromethanesulfonate 3.43 2.01
1-Butyl-3-methylimidazolium Bis(trifluoromethyl)amide 2.19 1.6
1-Butyl-3-methylimidazolium Hexafluoroantimonate 2.26 1.81
1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 2.68 1.96
1-Butyl-3-methylimidazolium Trifluoromethanesulfonate 3.02 1.93
1-Butyl-3-methylimidazolium Dicyanamide 3.15 1.93
1-Butyl-3-methylimidazolium Tetrafluoroborate 3.12 1.98
1-Butyl-3-methylimidazolium 2-(2-Methoxyethoxy)ethyl sulfate 3.16 1.99
1-Butyl-3-methylimidazolium 1-Methylsulfate 3.21 1.95
1-Butyl-3-methylimidazolium 1-Octylsulfate 3.23 1.98
1-Butyl-3-methylimidazolium Hexafluorophosphate 3.1 2.15
1-Butyl-3-methylimidazolium Hydrogensulfate 3.29 1.97
1-Butyl-3-methylimidazolium Toluene-4-sulfonate 3.29 2
1-Butyl-3-methylimidazolium Bromide 3.43 1.96
1-Butyl-3-methylimidazolium Thiocyanate 3.42 2
1-Butyl-3-methylimidazolium Chloride 3.55 1.91
1-Butyl-3-methylimidazolium 1-Methanesulfonate 3.51 1.99
1-Butyl-3-methylimidazolium Iodide 3.48 2.02
1-Decyl-3-ethylimidazolium Bromide 0.53 0.92
1-Decyl-3-methylimidazolium Tetrafluoroborate 0.77 1.08
1-Decyl-3-methylimidazolium Chloride 1.34 1.09
1-Decyl-3-methylimidazolium Hexafluorophosphate 1.5 1.68
1-Ethyl-3-methylimidazolium Bis[1,2-benzenediolato(2-)-O1,O2]borate 1.02 2.09
1-Ethyl-3-methylimidazolium Bis(pentafluoroethyl)phosphinate 2.83 2.09
1-Ethyl-3-methylimidazolium Bis[oxalato(2-)]-borate 2.93 2
1-Ethyl-3-methylimidazolium Tetracyanoborate 3.5 1.98
1-Ethyl-3-methylimidazolium Tetrafluoroborate 3.44 2.05
1-Ethyl-3-methylimidazolium Hexafluorophosphate 3.92 2.05
1-Ethyl-3-methylimidazolium 1-Ethylsulfate 3.93 2.07
1-Ethyl-3-methylimidazolium Trifluoroacetate 4 2.03
1-Ethyl-3-methylimidazolium Toluene-4-sulfonate 3.81 2.22
1-Ethyl-3-methylimidazolium Hydrogensulfate 3.99 2.13
1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate 4.09 2.13
1-Ethyl-3-methylimidazolium Thiocyanate 4.23 2.12
1-Heptyl-3-methylimidazolium Hexafluorophosphate 2.3 1.91
1-Heptyl-3-methylimidazolium Chloride 2.53 2.07
1-Heptyl-3-methylimidazolium Tetrafluoroborate 2.58 2.12
1-Hexadecyl-3-methylimidazolium Chloride -0.19 0.68
1-Hexyl-3-ethylimidazolium Bromide 2.01 1.77
1-Hexyl-3-ethylimidazolium Tetrafluoroborate 2.26 1.84
1-Hexyl-3-methylimidazolium 1,2-Benzisothiazolonium 1,1-dioxide 2.29 1.96
1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide 2.24 2.15
1-Hexyl-3-methylimidazolium Chloride 2.85 1.92
1-Hexyl-3-methylimidazolium Hexafluorophosphate 2.91 1.88
1-Hexyl-3-methylimidazolium Tetrafluoroborate 2.98 1.88
1-Methyl-3-(2-phenylethyl)imidazolium Hexafluorophosphate 2.93 1.9
1-Methyl-3-[(4-methylphenyl)methyl]imidazolium Chloride 2.64 1.86
1-Methyl-3-[(4-methylphenyl)methyl]imidazolium Tetrafluoroborate 2.67 2.08
3-Hexyl-1,2-dimethylimidazolium Tetrafluoroborate 1.9 1.27
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Table A1 (Continued )

Cation Anion IPC-81 AChE

3-Methyl-1-nonylimidazolium Chloride 1.4 1.36
3-Methyl-1-nonylimidazolium Tetrafluoroborate 1.65 1.43
3-Methyl-1-nonylimidazolium Hexafluorophosphate 1.85 1.62
3-Methyl-1-octadecylimidazolium Chloride 0.01 0.96
3-Methyl-1-octylimidazolium Tetrafluoroborate 1.59 1.53
3-Methyl-1-octylimidazolium Chloride 2.01 1.6
3-Methyl-1-octylimidazolium Bis(trifluoromethylsulfonyl)amide 1.64 2.03
3-Methyl-1-octylimidazolium Hexafluorophosphate 1.96 2.03
3-Methyl-1-propylimidazolium Tetrafluoroborate 3.47 2.3
3-Methyl-1-tetradecylimidazolium Chloride −0.42 0.54

Morpholinium
4-(2-Hydroxyethyl)-4-methylmorpholinium Bis(trifluoromethylsulfonyl)amide 3.19 2.93
4-(2-Methoxyethyl)-4-methylmorpholinium Bis(trifluoromethylsulfonyl)amide 3.81 2.9
4-(Ethoxymethyl)-4-methylmorpholinium Bis(trifluoromethylsulfonyl)amide 3.34 2.88
4-(Ethoxymethyl)-4-methylmorpholinium Chloride 3.52 2.96
4-Butyl-4-methylmorpholinium Bis(trifluoromethylsulfonyl)amide 3.43 2.78
4-Ethyl-4-methylmorpholinium Toluene-4-sulfonate 3.81 2.59
Phosphonium
Tetrabutylphosphonium Bromide 1.66 2.61
Tetrabutylphosphonium Bis[1,2-benzenediolato(2-)-O1,O2]borate 1.32 3.11

Piperidinium
1-(2-Ethoxyethyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.34 2.55
1-(2-Ethoxyethyl)-1-methylpiperidinium Bromide 4.31 2.6
1-(2-Hydroxyethyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.65 2.34
1-(2-Hydroxyethyl)-1-methylpiperidinium Iodide 4.58 2.34
1-(2-Methoxyethyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.28 1.93
1-(3-Hydroxypropyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.63 2.56
1-(3-Methoxypropyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.27 2.27
1-(3-Methoxypropyl)-1-methylpiperidinium Chloride 4.4 2.2
1-(Cyanomethyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 4 2.45
1-(Cyanomethyl)-1-methylpiperidinium Chloride 4.58 2.43
1-(Ethoxymethyl)-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.41 2.16
1-Butyl-1-methylpiperidinium Bis(trifluoromethylsulfonyl)amide 3.41 1.78
1-Butyl-1-methylpiperidinium Bromide 4.03 1.83

Pyridinium
1-(2-Ethoxyethyl)pyridinium Bis(trifluoromethylsulfonyl)amide 3.26 1.48
1-(2-Ethoxyethyl)pyridinium Bromide 4.24 1.55
1-(2-Hydroxyethyl)pyridinium Bis(trifluoromethylsulfonyl)amide 3.79 2.65
1-(2-Hydroxyethyl)pyridinium Iodide 4.15 2.69
1-(2-Methoxyethyl)pyridinium Bis(trifluoromethylsulfonyl)amide 3.19 2.09
1-(3-Hydroxypropyl)pyridinium Bis(trifluoromethylsulfonyl)amide 3.55 2.56
1-(3-Methoxypropyl)pyridinium Bis(trifluoromethylsulfonyl)amide 3.38 2.06
1-(Ethoxymethyl)pyridinium Bis(trifluoromethylsulfonyl)amide 3.12 2.14
1-(Ethoxymethyl)pyridinium Chloride 3.32 2.06
1-Butyl-2-methylpyridinium Tetrafluoroborate 3.25 0.82
1-Butyl-3,4-dimethylpyridinium Tetrafluoroborate 3.02 1.1
1-Butyl-3,5-dimethylpyridinium Tetrafluoroborate 3.25 1.17
1-Butyl-3-methylpyridinium Tetrafluoroborate 3.3 1.27
1-Butyl-4-methylpyridinium Tetrafluoroborate 2.98 1.54
1-Butylpyridinium Tetrafluoroborate 3.18 1.8
1-Butylpyridinium Bromide 3.9 1.77
1-Cyanomethylpyridinium Bis(trifluoromethylsulfonyl)amide 3.5 2.51
1-Cyanomethylpyridinium Chloride 3.79 2.47
1-Hexyl-4-methylpyridinium Tetrafluoroborate 2.17 1.48
1-Octyl-4-methylpyridinium Tetrafluoroborate 1.49 1.22
1-Octyl-4-methylpyridinium Chloride 1.63 1.11
1-Octylpyridinium Chloride 1.27 1.6
4-(Dimethylamino)-1-butylpyridinium Bis(trifluoromethylsulfonyl)amide 1.75 0.59
4-(Dimethylamino)-1-butylpyridinium Chloride 1.94 0.6
4-(Dimethylamino)-1-ethylpyridinium Bis(trifluoromethylsulfonyl)amide 2.84 0.93
4-(Dimethylamino)-1-ethylpyridinium Bromide 2.9 0.99
4-(Dimethylamino)-1-hexylpyridinium Chloride 0.93 0.5
4-(Dimethylamino)-1-hexylpyridinium Bis(trifluoromethylsulfonyl)amide 0.93 0.81

Pyrrolidinium
1-(2-Ethoxyethyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.2 2.55
1-(2-Hydroxyethyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.72 2.61
1-(2-Methoxyethyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.3 2.11
1-(Cyanomethyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.8 2.83
1-(Cyanomethyl)-1-methylpyrrolidinium Chloride 4.23 2.88
1-(3-Hydroxypropyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.6 2.77
1-(3-Methoxypropyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.4 2.71
1-(Ethoxymethyl)-1-methylpyrrolidinium Chloride 3.05 1.86
1-(Ethoxymethyl)-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.26 2.22
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Table A1 (Continued )

Cation Anion IPC-81 AChE

1,1-Dihexylpyrrolidinium Tetrafluoroborate 1.23 2.08
1-Butyl-1-methylpyrrolidinium Tetrafluoroborate 2.9 1.91
1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide 3.01 2.13
1-Butyl-1-methylpyrrolidinium Bromide 3.77 1.93
1-Butyl-1-methylpyrrolidinium Dicyanamide 4.23 1.98
1-Hexyl-1-methylpyrrolidinium Chloride 2.91 2.48
1-Methyl-1-octylpyrrolidinium Tetrafluoroborate 1.82 2.02
1-Methyl-1-octylpyrrolidinium Chloride 2.59 2.36

Quinolinium
2.16 0.62
2.32 0.79
1.07 0.48
0.17 0.3
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1-Butylquinolinium Tetrafluoroborate
1-Butylquinolinium Bromide
1-Hexylquinolinium Tetrafluoroborate
1-Octylquinolinium Tetrafluoroborate

here ˘ , K and Nj are, respectively, the global mean of all sam-
les, number of classes and the number of samples in class j. The
rincipal axes are the m leading eigenvectors of Ŝ:

ˆVi = ĝVi, i ∈ 1, . . . , m (A.5)

here ĝ is the ith largest eigenvalue of Ŝ. An assumption made for
eature extraction and dimensionality reduction by PCA is that most
nformation of the observation vectors is contained in the subspace
panned by the first m principal axes, where m < p. Therefore, each
riginal data vector can be represented by its principal component
ector with dimensionality m [32]. All mathematical processes of
he PCA technique are summarized in Fig. A1.

In this work, preserving the information of the original data,
ts dimensionality was reduced following the PCA technique
escribed.

.2. Neural networks descriptions

The neural network (NN) is characterised by layered archi-
ectures and feed-forward connections between neurons, or back
onnections. Weights are assigned to these connections between
he neurons of one layer and the next. In order to predict with the
east possible error, these weights must be optimized.

The calculation process in each neuron of the hidden and output
ayers consists of transfer and activation functions, Fig. A2. The acti-

ation function, Eq. (A.6), means that the input data for each neuron
re multiplied by a self-adjustable parameter, w, called weight; the
esult, xk, is fed into a transfer function. The sigmoid function is
ne of the most commonly used as a transfer function, Eq. (A.7).
he calculated value, yk, is the output of the considered neuron,

Fig. A1. Calculation scheme of the principal component analysis technique.
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ig. A2. Scheme calculation of MLP model (y = signal, w = weight, i-j-k = input, hid-
en and output layer, respectively).

ig. A2.

k =
∑
j=1

wjk · yj (A.6)

k = f (xk) =
(

1
1 + e−xk

)
(A.7)

n Eqs. (A.6) and (A.7), i, j, and k are the input, hidden and output
ayers, respectively.

.2.1. Learning and verification samples
The learning and verification samples were used to optimize

he matrix of weights and to verify the process, respectively. At this
tage, the NN uses the input values to predict the output values and
o optimization process of weights was carried out. The learning
nd verification samples were composed of data that characterise
he process. Both samples have the same format. These have as

any rows as variables necessary to model the process and the
ame number of columns as the number of vectors to describe the
ystem to be measured.

.2.2. MLP model design
The design of the MLP developed involves determining the

ollowing factors: training algorithm, NN optimal parameters,
opology and transfer function. The MLP used in this work is formed
f three layers (input, hidden and output). This topology with a sin-
le hidden layer has been considered sufficient to solve similar or
ore complex problems [13,18]. Moreover, more hidden layers may

ause over-fitting [33]. One of the most important stages is the opti-
ization of the matrix of weights. This matrix is optimized using

he learning and verification processes.
Learning process. The learning sample was presented to the net-

ork and a back-propagation algorithm automatically adjusted
he weights so that the output response to input vector was as
lose as possible to the desired response [34]. Each estimation was

ompared to the corresponding desired value. Then, the estima-
ion error (difference between the estimated and desired values,
lso called prediction error) was back distributed across the net-
ork in a manner that allows the interconnection weights to be
odified according to decreases in the estimation error. To opti-
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ise the MLP model, several training functions were tested, as
escribed in literature [14]. When the weights were modified,
he next data set was fed to the network, and a new estimation
as made. The estimation error was calculated again and back
istributed across the network for the next modification. Simul-
aneously, using the verification sample, a verification test was
arried out to determine the level of generalization produced by the
earning set and to monitor NN over-fitting [35]. When all data of
he learning sample were used, an epoch was finished and other one
egan. To avoid over-fitting of the neural network model, the learn-

ng process was repeated while the verification error decreased
36]. A matrix of weights was optimised for each training function
14].

Verification process. In this process, the model was tested against
he verification sample that had not been included in the neural
etwork learning. The objective of this step was to evaluate the
ompetence of the trained MLP model. For each training function,
he matrix of weight optimised above was used. The verification
ample was input into the MLP and predicted values were calcu-
ated. These were compared with the real values to optimise the
arameters of the MLP model by statistical tools. In this process,
o corrections of these weights were made and the MLP was only
sed for prediction.

.2.2.1. Optimization process of the MLP model. In order to optimise
he MLP model, two stages were carried out. Firstly, the adequate
raining function was selected, and then, the main parameters of
he MLP model (using the adequate training function) were opti-

ized.
Selection of the training function: Using the adequate learning

nd verification samples, the training function was selected among
4 different functions [14]. To investigate the effect of each train-
ng function, all other MLP parameters were set, i.e. the topology
as 8 hidden neurons and the others were set as shown in liter-

ture [14]. With these conditions and for each training function, a
earning process, and then, a verification process were developed.
he predicted values were calculated in the verification process.
his process was repeated with every training function, and then,
ll predicted values for each training function were compared indi-
idually with the real values. These comparisons were carried out
y prediction error, mean square error (MSE), Eq. (A.8), statisti-
al tests and correlation coefficient (R2) (predicted vs. real values).
hey were carried out to determine if there were significant differ-
nces between real data and those predicted by the MLP (at 95%
onfidence level). To check the null hypothesis (both series are sta-
istically equal), p-value (PV) was used. If p-value is greater than
.05, the null hypothesis is fulfilled.

Given that the NN must predict with the highest possible accu-
acy, the training function selection was carried out to obtain the
ighest values of PV and R2 of predicted vs. real values and the least
SE, Eq. (A.8).

SE = 1
N

N∑
k=1

(rk − yk)2 (A.8)

n Eq. (A.8), N, rk and yk are the number of estimations, and the real
nd estimated values, respectively.

Optimization of MLP parameters: Using the MLP model with the
raining function selected above, the parameters of the MLP were
ptimized by a Central Composite Design 24 + star experimental

esign, where the variables analyzed were the parameters to opti-
ize. As can be seen below, the training function selected in every

ase was trainBR. The variables analyzed were the hidden neurons
umber (HNN), which is related to the converging performance of
he output error function during the learning process. Too few HNN

[

[

s Materials 164 (2009) 182–194 193

alues would hamper the learning capability of the NN, while too
any can cause over-fitting or memorization of the learning sam-

le. The HNN were tested between 1 and 8 neurons [37,38]. The
earning coefficient (Lc) controls the degree at which connection

eights are modified during the learning phase. The learning coef-
cient decrease (Lcd) and learning coefficient increase (Lci) control
he Lc value. The Lcd and Lc were tested between 0.001 and 1 and Lci
etween 2 and 100 [18,39]. The responses of experimental design
ere taken in the learning and verification processes. In the learn-

ng process, the epoch number necessary to optimize the matrix of
eights and the MSE values were taken. In the verification process,

he R2 of predicted vs. real values and mean prediction error were
sed, Eq. (3).

Learning and verification processes are carried out in each run
f the experimental design. Finally, the responses of experimental
esign were taken. The design was analyzed taking into account
hat the NN must predict with the least MSE (Eq. (A.8)) and MPE
Eq. (3)), and the R2 must be as close to unity as possible in the
owest iteration number. Given that the learning data are positives,
he sigmoid function was selected as transfer function of the MLP

odel.

.2.3. RB model design
A RB model was developed to estimate the log10 EC50 of ILs in

PC-81 and AChE systems. In a RB model there are three types of
arameters: hidden neurons number, weights and width parame-
ers (spread constant). The hidden neurons number and the matrix
f weights are optimized by the RB algorithms [14]. And so, in the RB
ptimization process, the Spread Constant (SC) is the only parame-
er to optimize. Therefore, the experimental factor analyzed was SC
between 1 × 10−3 and 1 × 106) [14]. The responses were the MPE,
tandard deviation (�) and R2 values. Given that both log10 EC50
ust be estimated with the highest possible accuracy, the least

rror with the highest values of both PV and R2 were the premises
o optimize the SC value.
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